

POSTER PRESENTATION

Open Access

Influence of polyphenol-rich apple pomace extract on oxidative damage to DNA in type 2 diabetes mellitus individuals

Annemarie Grindel^{1*}, Elisabeth Müllner¹, Helmut Brath², Walther Jäger³, Trine Henriksen^{4,5}, Henrik Enghusen Poulsen^{5,6}, Doris Marko⁷, Karl-Heinz Wagner¹

From Metabolism, Diet and Disease 2014: Cancer and metabolism Washington DC, USA. 28-30 May 2014

Background

Diabetes mellitus type 2 (DM2) is associated with increased oxidative stress and oxidative damage to DNA. An appropriate intake of antioxidants via the diet can improve this disturbed oxidative status [1]. Apples are the most widely consumed fruits in Europe and represent a major source of antioxidants due to their high polyphenol content [2]. Apple pomace as a polyphenol-rich byproduct of apple juice production could serve as a cheap and reliable tool for a nutraceutical with antioxidative properties.

Materials and methods

To test the antioxidant potential of a pectin-depleted apple pomace extract (APE) in human subjects, a placebo-controlled, crossover, double-blind, pilot human intervention study was performed. Eighteen postmenopausal women with DM2 (age=69.7±6.7 y; BMI=33.9±4.5 kg/m2) were randomly allocated to receive either APE (440 mg per capsule containing about 100 mg total polyphenols, once daily) or placebo during two 4-week supplementation periods separated by a 4-week wash-out period. Before and after each supplementation period oxidative damage to DNA (Comet Assay) in peripheral blood mononuclear cells (PBMC) and whole blood, urinary excretion of 8oxo-7hydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8dihydroguanosine (8-oxoGuo), glycated hemoglobin (HbA1c), fasting blood glucose, insulin, C-peptide and anthropometric indices were measured. The bioavailability of the main APE polyphenol Phloridzin and its metabolite Phloretin were analyzed in plasma samples.

Results

In contrast to the placebo-supplementation, APE resulted in detectable plasma Phloridzin (12.7 \pm 40.7 ng/ml) and Phloretin (19.3 \pm 36.5 ng/ml) concentrations. The study population was characterized by HbA1c =5 4.9 \pm 6.3 mmol/mol, fasting blood glucose = 8.1 \pm 1.9 mmol/l, fasting insulin = 99.3 \pm 36.6 pmol/l and C-peptide = 1.3 \pm 0.4 nmol/l baseline levels. However, these DM2 biomarkers were not influenced by the supplementation with APE compared to placebo. No changes occurred in 8-oxoGuo and 8-oxodG. FPG-sensitive sites of whole blood decreased (P = 0.026) regarding apple pomace intervention of both diet periods. Neither DNA strand breaks nor H₂O₂-sensitivity of DNA altered following APE supplementation.

Conclusions

Oxidatively damaged purines decreased after APE intervention while other markers of oxidative damage to DNA in DM2 individuals did not change after short-term supplementation with polyphenol-rich APE.

Authors' details

¹Department of Nutritional Sciences, University of Vienna, Vienna, Austria. ²Diabetes Outpatient Clinic, Health Centre South, Vienna, Austria. ³Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria. ⁴Laboratory of Clinical Pharmacology, Rigshospitalet, Copenhagen, Denmark. ⁵Department of Clinical Pharmacology, Bispebjerg Hospital, Copenhagen, Denmark. ⁶Health Science Faculty, University of Copenhagen, Copenhagen, Denmark. ⁷Institute of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria.

Published: 28 May 2014

References

 Müllner E, Brath H, Pleifer S, Schiermayr C, Baierl A, Wallner M, Fastian T, Millner Y, Paller K, Henriksen T, Poulsen HE, Forster E, Wagner KH:

¹Department of Nutritional Sciences, University of Vienna, Vienna, Austria Full list of author information is available at the end of the article

- Vegetables and PUFA-rich plant oil reduce DNA strand breaks in individuals with type 2 diabetes. Mol Nutr Food Res 2013, 57:328-338.
- 2. Hyson DA: A comprehensive review of apples and apple components and their relationship to human health. *Adv Nutr* 2011, **2**:408-420.

doi:10.1186/2049-3002-2-S1-P25

Cite this article as: Grindel *et al.*: Influence of polyphenol-rich apple pomace extract on oxidative damage to DNA in type 2 diabetes mellitus individuals. *Cancer & Metabolism* 2014 2(Suppl 1):P25.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

