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Abstract

In order to solve a jigsaw puzzle, one must first have the complete picture to logically connect the pieces. However,
in cancer biology, we are still gaining an understanding of all the signaling pathways that promote tumorigenesis
and how these pathways can be pharmacologically manipulated by conventional and targeted therapies. Despite not
having complete knowledge of the mechanisms that cause cancer, the signaling networks responsible for cancer are
becoming clearer, and this information is serving as a solid foundation for the development of rationally designed
therapies. One goal of chemotherapy is to induce cancer cell death through the mitochondrial pathway of apoptosis.
Within this review, we present the pathways that govern the cellular decision to undergo apoptosis as three distinct,
yet connected puzzle pieces: (1) How do oncogene and tumor suppressor pathways regulate apoptosis upstream of
mitochondria? (2) How does the B-cell lymphoma 2 (BCL-2) family influence tumorigenesis and chemotherapeutic
responses? (3) How is post-mitochondrial outer membrane permeabilization (MOMP) regulation of cell death relevant
in cancer? When these pieces are united, it is possible to appreciate how cancer signaling directly impacts upon the
fundamental cellular mechanisms of apoptosis and potentially reveals novel pharmacological targets within these
pathways that may enhance chemotherapeutic success.
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Review
In multi-cellular organisms, cell growth, cell division, and
cell death are regulated by a host of signaling pathways
that integrate cellular condition and context. Within
healthy tissues, there is a balance between these pro-
cesses allowing for homeostasis. When this balance is
perturbed, usually by uncontrolled proliferation and a
collateral failure to activate cell death, susceptibility to
cancer is increased. It has been suggested that there are
as many ways to cause cancer as there are constellations
in the sky—and we highlight a few of these pathways in
our discussion below. Despite the many signaling path-
ways that lead to cancer vulnerability, most would
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agree that the best method to treat cancer is to specific-
ally eliminate diseased cells via a genetically controlled
program of cell death termed apoptosis.
Apoptosis is characterized by cysteine-aspartic prote-

ase (caspase)-dependent cleavage of numerous cellular
substrates that allows for efficient packaging, detection,
and elimination of the targeted cell from the surrounding
environment. For our discussion, we will focus on the
mitochondrial pathway of apoptosis, which means that
mitochondria integrate the pro-apoptotic signaling environ-
ment via the B-cell lymphoma 2 (BCL-2) family of proteins
to regulate cell death [1,2]. The BCL-2 family controls the
integrity of the outer mitochondrial membrane (OMM)
and is functionally divided into anti- and pro-apoptotic
proteins. Anti-apoptotic BCL-2 members (e.g., BCL-2/
BCL-xL/MCL-1) preserve OMM integrity by directly
sequestering the pro-apoptotic proteins, which cooperate
to form pores with the OMM. Pore formation is referred
to as mitochondrial outer membrane permeabilization
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(MOMP), and this results in the release of mitochondrial
proteins (e.g., cytochrome c) that cooperate with cellular
adaptor proteins (i.e., APAF-1) to induce caspase activation.
From a mechanistic point of view, pro-apoptotic BCL-2
members are further divided into two subclasses: the
effectors (e.g., BAX) and BH3-only proteins (e.g., BIM). It
is suggested that BAX forms proteolipid pores within the
OMM, and this process is nucleated by cooperative inter-
actions with mitochondria and BH3-only proteins [3].
Returning to cancer-causing pathways, there are two

general classes of proteins that promote tumorigenesis:
oncogenes and tumor suppressors [4]. Oncogenic proteins
normally function in homeostatic proliferative and survival
mechanisms, but due to mutation (e.g., RASG12V and
BRAFV600E) or divergent expression (e.g., BCL-2), these
proteins undergo a gain of function to promote hyper-
proliferation or sustained survival despite pro-apoptotic
signaling. Likewise, tumor suppressor proteins (e.g., p53
and PTEN) negatively regulate survival and proliferation
following cellular stress, but when mutated or deleted,
they fail to appropriately restrain proliferation and this has
potential to promote genomic instability and organelle
dysfunction. In most cancers, distinct combinations of
oncogenic signals and loss of tumor suppressor pathways
drive tumorigenesis and resistance to apoptosis. Here,
we will discuss specific examples of how oncogenic and
tumor suppressor pathways intersect with the apoptotic
machinery to alter apoptotic sensitivity, which ultim-
ately impacts upon chemotherapeutic success and patient
outcome.

Piece #1—How do oncogene and tumor suppressor
pathways regulate apoptosis upstream of mitochondria?
Numerous oncogenic and tumor suppressor pathways
converge on the BCL-2 family of proteins and downstream
effectors to regulate cellular sensitivity to apoptosis during
transformation as well as chemotherapeutic interventions.
Here, we will discuss some of the most commonly altered
tumor suppressor and oncogenic pathways that contribute
to apoptotic defects in cancer (Figure 1). The tumor sup-
pressor pathways (p53, retinoblastoma (Rb), and phosphat-
ase and tensin homolog (PTEN)) and the proto-oncogene/
oncogene pathways (Phosphoinositide 3-kinase/Akt (PI3K/
AKT), RAS/RAF, Myc, and BCL-2) will be highlighted
due to their broad implications in multiple tumor types
[5,6]. It is important to note that tumor suppressors
and oncogenes function via transcriptional and/or non-
transcriptional mechanisms. While the p53 tumor suppres-
sor is an example of a protein that functions through both,
other proteins such as BCL-2 function primarily through
non-transcriptional means at the mitochondria, ER, and
perhaps other cellular locations [1]. In the sections that
follow, we will discuss these pathways in more detail.
What is the role of the tumor suppressor network in
apoptosis?
One of the major regulators of apoptotic signaling following
oncogenic (e.g., aberrant Myc expression) and pharmaco-
logical stress (e.g., conventional chemotherapy) is the
p53 pathway. p53, often referred to as “guardian of the
genome”, is a transcription factor that regulates cellular
responses to a multitude of stresses including DNA dam-
age, oncogene activation, and cell cycle and metabolic aber-
rations [7,8]. In the event of acute stress, the p53 pathway
ensures that DNA damage events are allowed to repair
prior to mitosis [9-11]. However, if stress is chronic and/
or repair mechanisms insufficient, pro-apoptotic signaling
mediated by p53 acts to eliminate the affected cell [7].
To commit a cell to apoptosis, p53 acts through both

transcriptional and non-transcriptional mechanisms. p53
sensitizes cells to apoptosis through direct transcriptional
induction of numerous pro-apoptotic members of the
BCL-2 family including, BAX, Noxa, and PUMA [12-15].
In addition to its transcriptional role, p53 directly interacts
with multiple members of the BCL-2 family to regulate
MOMP. For example, cytosolic and mitochondrial forms
of p53 have been shown to directly activate the pro-
apoptotic effectors BAK/BAX as well as bind and inhibit
the anti-apoptotic proteins BCL-xL and BCL-2 [16-19].
The integration of p53 at multiple points in the mitochon-
drial pathway of apoptosis highlights the crucial role for
this tumor suppressor pathway in the cellular decision to
commit to apoptosis.
Another tumor suppressor with highly aberrant ex-

pression in many cancers is the Rb protein [20-24]. In
unstressed cells, Rb is generally maintained at a hypo-
phosphorylated state, which favors a Rb-E2F interaction.
During G1, hyper-phosphorylation of Rb by CDK/cyclin
complexes disrupts this interaction, thereby de-repressing
E2F and allowing for the transcription of genes required
for cell cycle progression [25]. Over the years, however,
additional anti- as well as pro-survival roles have been
described for Rb [26-32]. Consistent with a tumor sup-
pressive function, a pro-apoptotic role for Rb has been
described in studies using various cancer cell lines, includ-
ing glioblastoma, prostate, and cervical cancers [27-29].
In this context, Rb was shown to induce apoptosis in
response to genotoxic and oncogenic stresses by promoting
transcriptional activation of pro-apoptotic proteins [33].
More recently, Rb was reported to localize to mitochondria
and induce apoptosis through direct activation of BAX
[34,35]. Interestingly, an anti-apoptotic role has also been
described for the protein. Rb has been shown to decrease
apoptotic sensitivity in mouse cell lines (again through
E2F1 repression) by lowering expression levels of APAF-1
and caspase-9 [31,36,37]. These opposing functions suggest
a context-dependent role for Rb in the regulation of
apoptosis.



Figure 1 Piece #1: Tumor suppressor and oncogenic pathways converge on the mitochondrial pathway of apoptosis. Oncogenic (e.g.,
PI3K/AKT, RAS-MAPK, and Myc) and tumor suppressor pathways (e.g., p53, PTEN, and Rb) act at transcriptional and non-transcriptional levels to
modulate cellular sensitivity to detect and repair stress, along with regulating the expression and function of downstream apoptotic proteins.
Details are provided in the text.
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Tumor suppressors are considered the “sentinels” of a
cell that protect from oncogenic aberrations to restrict
proliferation to healthy cells. Moreover, these pathways
function to detect oncogenic stress and/or DNA damage to
halt proliferation. It is for these reasons that pre-malignant
cells select against this first line of defense in order to initi-
ate tumorigenesis.

How does oncogenic signaling regulate apoptosis?
A common driver of oncogenesis is the alteration of
genes through mutation or chromosomal aberration.
While proto-oncogenes ensure a balance between sur-
vival and apoptosis to maintain healthy tissues, their
mutant form, oncogenes, shifts this balance to favor cell
survival, proliferation, and resistance to cell death.
The PI3K/AKT pathway plays a major role in promot-

ing many tumor types. PI3K/AKT is among the most
frequently mutated network in cancer [38,39], which leads
to massive hyper-activation of this potent survival and
proliferation pathway. In addition, several cancers reduce
the negative regulator of the pathway, PTEN, a commonly
mutated tumor suppressor. PTEN is a dual specificity
protein and lipid phosphatase that localizes mainly
to the cytosol but is suggested to function in the
nucleus and extracellular matrix [40,41]. PTEN nega-
tively regulates the PI3K/AKT pathway by inhibiting
the PIP3-dependent activation of AKT [42]. Once active,
AKT phosphorylates numerous downstream substrates,
including transcription factors as well as direct regulators
of apoptosis. Examples of these include the FOXO family
of transcription factors which are phosphorylated and
inactivated by AKT, resulting in decreased expression
of their target pro-apoptotic proteins BIM and PUMA
[43-45]. In addition, AKT directly phosphorylates and
suppresses the function of the pro-apoptotic BCL-2 family
proteins BAD, BIM, and BAX and upregulates the levels
of X-linked inhibitor of apoptosis protein (XIAP) through
increased protein stability [43,46-48]. Taken together, the
activating mutations in the PI3K/AKT pathway, combined
with the inactivation of the PTEN tumor suppressor,
result in oncogenic activation of one of the most formidable
signaling pathways in cancer. Targeting this pathway at
tumor suppressor (i.e., PTEN) and oncogene levels gives
the advantage of not only attacking the pro-survival arm of
the pathway but also ensuring apoptosis induction through
restoration of its tumor suppressor function as well.
The RAS/mitogen-activated protein kinase (MAPK)

pathway is another major cellular signaling network that
commonly acquires oncogenic mutations at various points
in the pathway. For example, mutations in receptor tyrosine
kinases (e.g., EGFR, ErbB2), the small GTPase RAS (i.e.,
RASG12V), and downstream RAF kinases (e.g., BRAFV600E)
are described in a variety of cancers [38,49-53]. The path-
way proceeds via a series of intermediate kinases leading
to the activation of extracellular receptor kinase (ERK),
which regulates the transcriptional activation of many
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genes involved in cell cycle and apoptosis. ERK signaling
has been shown to transcriptionally activate the pro-
survival genes BCL-2 and BCL-xL, as well as stabilize
MCL-1 through phosphorylation [54,55]. It has been
reported that oncogenic ERK activation leads to a decrease
in expression levels of BIM, as well as proteasomal degrad-
ation of BIM through direct phosphorylation of the protein
[56-58]; all of which can be reversed by small molecule
inhibition of the pathway [59-62]. In addition, kinases
downstream of ERK (e.g., RSK, S6K) directly phosphoryl-
ate and inactivate the pro-apoptotic BCL-2 family member
BAD, as well as caspase-9 and APAF-1 [63-66].
Myc is a classic oncogenic transcription factor that is

over-expressed in a large number of human cancers. Myc
expression is upregulated through a variety of mechanisms
including chromosomal translocations and amplifications,
activation of upstream growth signaling pathways, and
increased protein stability [67]. Myc was one of the first
proteins identified to have antagonistic pleiotropic func-
tions, promoting both cell survival and cell death [68].
The paradox arises from the oncogene’s ability to cause
apoptosis when over expressed, and it has been suggested
that this apoptotic phenotype is a measure to ensure pro-
tection against unrestricted proliferation, and is bypassed
during tumorigenesis [67]. Myc-induced apoptosis can be
p53 dependent based on cell type and apoptotic stimulus.
Upregulation of p53 by Myc increases the expression of
the pro-apoptotic BCL-2 family members, BAX, PUMA,
and Noxa [12-15]. Alternatively, a p53-independent mech-
anism of Myc exists by either directly suppressing BCL-2
expression in a cell type-specific manner or directly acting
on BIM expression [69]. More recently, the oncometabo-
lite 2-hydroxyglutarate from isocitrate dehydrogenase
mutant cancers was found to directly activate Myc-
mediated apoptosis in breast cancer [70], suggesting that
Myc may be an important link between altered cellular
metabolism and apoptosis in cancer.
The focus of this section thus far has been on how

potent oncogenes function to ensure cell survival and
target apoptotic pathways to reduce cell death sensitivity.
Last but not least on this list comes the founding member
of the BCL-2 family itself. Originally identified as a
chromosomal translocation in B-cell lymphoma, BCL-2 is
the founding member of the family that is responsible
for directly inhibiting the mitochondrial pathway of apop-
tosis [71]. The translocation identified in B-cell lymphoma
positions BCL-2 under the control of the immunoglobulin
heavy-chain promoter, leading to massive BCL-2 over-
expression and subsequent resistance to cell death. The
function of BCL-2 as an oncogene is unusual in that
over-expression alone is not sufficient to drive cellular
transformation but requires additional oncogenes (e.g.,
Myc) [72]. This result revealed that BCL-2 does not
promote cell proliferation, but rather it blocks pro-
apoptotic signals from collateral oncogenes. While
the example of BCL-2 translocation in lymphoma is not
observed in many tumor types, over-expression of anti-
apoptotic members of the BCL-2 family is a common
feature in cancers of the uterus, lung, ovary, breast, colon,
liver, and gastrointestinal tract [73-76]. The mechanism
by which BCL-2 expression directly controls apoptosis will
be discussed shortly.
The oncogenic and tumor suppressor pathways mutated

in cancer have become major targets for drug develop-
ment over the past few decades. While most conventional
chemotherapy responses proceed via the mitochondrial
pathway of apoptosis (often mediated by DNA damage
and p53), more recently there has been explicit focus on
the development of targeted therapies for specific proteins
within these tumorigenic pathways. Table 1 presents a
sampling of the current and developing drugs targeting
the tumor suppressors and oncogenes described above.
While tumor suppressor and oncogenic pathways require
mitochondrial contributions to die, the cellular decision
to initiate MOMP and apoptosis is governed by the
functional repertoire of BCL-2 family proteins at the
OMM. In the next section, we will discuss how the
BCL-2 family of proteins impacts upon the execution
of the mitochondrial pathway of apoptosis in response
cancer cell signaling and chemotherapeutics.

Piece #2—How does the BCL-2 family influence
tumorigenesis and chemotherapeutic responses?
The BCL-2 family comprises four groups of proteins,
which are based on their domain composition (i.e., one
to four BCL-2 homology “BH” domains) and function
[77]. Pro-apoptotic effectors (BAK and BAX) are mech-
anistically involved in MOMP as these proteins interact
with the OMM, leading to its permeabilization [77]. In
order for BAK or BAX to initiate MOMP, they must be
localized to the OMM, which creates the appropriate
biophysical and biochemical environment to support struc-
tural rearrangements that nucleate homo-oligomerization
into proteolipid pores [78,79]. The structural rearrange-
ments can be triggered by various mechanisms, but the
one most relevant to our discussion is via protein-protein
interactions with the direct activator BH3-only proteins
(e.g., BID and BIM) [80-82]. Through direct binding of
these proteins to either the N-terminus of BAK/BAX or a
hydrophobic region in the core of the protein formed by
the BH1–3 domains, the direct activators trigger essential
conformational changes that render these effector proteins
competent to oligomerize [82-84]. Conversely, the anti-
apoptotic proteins (e.g., BCL-2, BCL-xL/BCL2L1, BCL-w/
BCL2L2, A1/BCL2A1, and MCL-1) inhibit BAK/BAX
activation by direct interaction or by sequestration of the
direct activator BH3-only proteins [80,81]. This inhibition
can be prevented (termed “sensitization”) or displaced



Table 1 Drugs currently in clinical trials targeting tumor suppressor/oncogene pathways or proteins within the
mitochondrial pathway of apoptosis

Target Drug Mechanism Clinical trial

Tumor suppressors/oncogenes p53 ADVEXIN (Ade5CMV-p53)1 Gene therapy for introduction of wtp53 Phase III

P13K Idelalisib (GS-1101)2 Inhibitor of PI3Kδ Phase II

Buparlisib3 ATP competitive inhibitor of class I PI3K Phase II

SAR245408 (XL 147)4 ATP competitive inhibitor of class I PI3K Phase I/II

P13K/mTOR BEZ2353 Dual kinase inhibitor to PI3K and mTOR Phase II

BGT2263 Dual kinase inhibitor to PI3K and mTOR Phase I

PF-046915025 Dual kinase inhibitor to PI3K and mTOR Phase I/II

SAR2454096 Dual kinase inhibitor to PI3K and mTOR Phase II

AKT Perifosine7 Inhibitor to AKT Phase I/II

Receptor tyrosine kinases
(e.g., EGFR)

Iressa (Gefitinib)8 ATP competitive tyrosine kinase inhibitor Phase I/II

Tarceva (Erlotinib)9 ATP competitive EGFR inhibitor Phase II/III

Cetuximab10 Monoclonal-antibody against EGFR
prevents receptor dimerization

Phase II/III

Tykerb (Lapatinib)11 Inhibitor to receptor phosphorylation Phase I/II

Vectibix (Panitumumab)12 Monoclonal antibody against EGFR
inhibits receptor activation

Phase II

RAS Salirasib13 Blocks RAS membrane association Phase II

Sarasar (Lonafarnib)14 Inhibitor to farnesyl transferase Phase II

Zarnestra (Tipifarnib)15 Inhibitor to farnesyl transferase Phase II/III

BRAFV600E Zelboraf (Vemurafenib)9 ATP-competitive selective inhibitor Phase II

RAF Nexavar (Sorafenib)16 Multi-kinase inhibitor Phase II/III

Tafinlar (Dabrafenib)11 ATP competitive kinase inhibitor Phase I/II

MEK Mekinist (Trametinib)11 MEK inhibitor Phase II/III

Mitochondrial pathway Anti-apoptotic BCL-2 proteins Navitoclax (ABT-263)17 Inhibits BCL-2, BCL-w, and BCL-xL Phase I/II

ABT-19917 Inhibits BCL-2 Phase I

Gossypol(AT-101)18 Inhibits BCL-2, BCL-xL, MCL-1 and BCL-w Phase I/II

Obatoclax19 Inhibits BCL-2, BCL-xL, and MCL-1 Phase I/II

XIAP GEM640 (AEG35156)20 Blocks expression of XIAP Phase I/II

IAPs LCL-1613 Peptidomimetic of SMAC-inhibits IAPs Phase I/II

Birinapant (TL32711)21 Peptidomimetic of SMAC-inhibits IAPs Phase II

Records were obtained from the National Cancer Institute and NIH clinical trials databases (http://www.cancer.gov; https://clinicaltrials.gov).
1Introgen Therapeutics, TX, USA, 2Gilead, CA, USA, 3Novartis, Basel, Switzerland, 4Exelixis, CA, USA, 5Pfizer, NY, USA, 6Sanofi, Paris, France, 7Aeterna Zentaris,
Quebec, Canada, 8Astra Zeneca, London, UK, 9Genentech, CA, USA, 10Imclone Systems Inc., NY, USA, 11GlaxoSmithKline, Middlesex, UK, 12Amgen, CA, USA,
13Concordia Pharmaceuticals, FL, USA, 14Merck, NJ, USA, 15Johnson & Johnson, NJ, USA, 16Onyx Pharmaceuticals, CA, USA, 17AbbVie, IL, USA, 18Ascenta
Therapeutics, PA, USA, 19Gemin X Pharmaceuticals, Quebec, Canada, 20Aegera Therapeutics, Quebec, Canada, 21TetraLogic Pharmaceuticals, PA, USA.
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(termed “de-repression”) by the final group of BCL-2
family members, the sensitizer/de-repressor BH3-only
proteins (e.g., BAD, Noxa, and PUMA) [80,85]. As the
role of the BH3-only proteins is significant in the regu-
lation of cellular sensitivity to apoptosis via BAK and
BAX activation, we will discuss several approaches to
regulate BH3-only protein function by intracellular
signaling pathways and small molecules that were
designed to mimic their action. The mechanism of
action of the BCL-2 family to regulate apoptosis is
summarized in Figure 2.
BCL-2 family deregulation in cancer
The regulation of MOMP is complex due to multiple
proteins and pathways converging upon the BCL-2
family; furthermore, there are specific expression and
functional patterns that are dependent upon cell type
and differentiation state [86]. What is key to under-
standing how the BCL-2 family regulates apoptosis in
cancer is directly linked to the mechanisms described
earlier, those being sensitization, de-repression, and direct
activation of BAK/BAX. In addition to the above BCL-2
translocation event, epigenetic regulation of anti-apoptotic

http://www.cancer.gov
https://clinicaltrials.gov


Figure 2 Piece #2: The BCL-2 family controls BAK/BAX activation and MOMP. Pro-apoptotic BCL-2 family protein activation is triggered
by extra- and intra-cellular signaling. De-repressor BH3-only proteins (green) prevent or disrupt inhibition by anti-apoptotic proteins (red). Direct
activator BH3-only proteins (yellow) bind BAK and BAX (blue) to induce their homo-oligomerization and MOMP. Details are provided in the text.
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BCL-2 proteins also plays a role in reducing cellular sensi-
tivity to apoptosis. As an example, hypo-methylation
of the BCL-2 promoter has been reported in chronic
lymphocytic leukemia (CLL) [87]. Of course, the expres-
sion of anti-apoptotic proteins is positively selected during
transformation because the targeted cell is trying to elim-
inate itself through pro-apoptotic signaling, yet oncogenic
and tumor suppressor pathways must promote anti-
apoptotic BCL-2 family function to survive [88]. The
dual upregulation of pro-apoptotic and anti-apoptotic
proteins is referred to as “priming”, which means the
cells are uniquely poised to engage apoptosis due to
constitutive sequestration of pro-apoptotic proteins, such
as BIM. The presence of sequestered BIM presents a
pharmacological opportunity to treat primed cancer cells
with BH3 mimetics (discussed below) as pro-apoptotic
signaling appears intact [89,90].
Post-transcriptionally, several cancer-associated miR-

NAs are involved in the control of the BCL-2 family. For
example, miR-15a and miR-16-1 are reduced in about
two thirds of B-cell CLL cases resulting in BCL-2 over-
expression and the establishment of disease [91]. Other
miRNAs in CLL, such as miR-181a/b, attenuate BCL-2 and
BCL-xL expression and are markers of chemotherapeutic
success [92]. In addition to regulation at the transcriptional
and translational levels, members of the BCL-2 family are
controlled by a variety of post-translational modifications.
For instance, BAD phosphorylation on serines 112 and
136 is exacerbated in glioblastomas, prostate cancers,
and melanomas due to a combination of oncogenic MAPK
signaling and PTEN mutation/downregulation [93]. This
situation likely mediates sensitivity to apoptosis by altering
the affinity of BAD for anti-apoptotic partners, thereby
influencing sensitization and de-repression mechanisms.
On a similar note, BIM-EL (one of three BIM isoforms)
phosphorylation at serine 69 by oncogenic MAPK signaling
influences associations with MCL-1 and correlates with
resistance to apoptosis in CLL [94]. Altogether, the above
examples show that the BCL-2 family proteins are regu-
lated at the genomic, translational, and post-translational
levels by cancer-associated pathways.

How do we pharmacologically target the BCL-2 family?
In order to engage apoptosis, BH3-only proteins must
interact with anti- and pro-apoptotic BCL-2 proteins;
therefore, the majority of small molecules identified to
regulate apoptotic sensitivity mimic these interactions.
One of the first natural BH3-mimetic molecules discovered
was gossypol, a polyphenol extracted from cottonseed [95].
Gossypol and its derivative, TW-37, and apogossypolone
(ApoG2) target BCL-2, BCL-xL, and MCL-1, and effectively
promote apoptosis in lung, prostate, and lymphoma cancer
models [96-98]. In parallel to naturally derived compounds,
numerous small molecules were engineered through
structure activity relationship strategies to target the
hydrophobic groove of anti-apoptotic BCL-2 proteins.
For example, chemical engineering and assembly of
several low affinity molecules led to the generation of
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the highly specific drug ABT-737 [99]. Despite lacking
some key pharmacological properties required to be used
in the clinic (e.g., non orally bio-available), the discovery of
ABT-737 constituted a milestone in specifically targeting
the BCL-2 family, and further modification of this drug
led to the bioavailable derivative, ABT-263. ABT-737 and
ABT-263 are highly specific for BCL-2, BCL-xL, and BCL-
w and have proven efficacy on BCL-2/BCL-xL-dependent
tumors such as leukemia and lymphoma [99]. As an aside,
one commonly observed side effect of ABT-263 therapy is
rapid thrombocytopenia, which occurs because platelets
rely exclusively on BCL-xL for survival [100,101]. To avoid
this phenotype, an additional derivative (ABT-199) was
generated that has markedly reduced its affinity for
BCL-xL, and is therefore more specific to BCL-2 [102].
Indeed, ABT-199 was shown to retain the same efficiency
as ABT-737 on leukemia and lymphomas without the
collateral thrombocytopenia [102,103].
Consistent with the development of rational drug design

to target anti-apoptotic BCL-2 proteins, new molecules
were recently reported, including MIM1 [104], Terphenyl-
14, and WEHI-539 [105,106], which specifically target
MCL-1 and BCL-xL, respectively. These pharmacological
agents are highly significant to designing precision treat-
ments as tumors frequently display dependency upon
BCL-2 or MCL-1, and chemo-resistant tumors often
shift reliance between anti-apoptotic BCL-2 proteins.
Importantly, the dependency upon different anti-apoptotic
BCL-2 proteins can be determined by BH3 profiling to
reveal which patients are most likely to respond to con-
ventional chemotherapy [107,108]. Interestingly, recent
evidence suggests that response to BH-3 mimetics is
not only determined by the anti-apoptotic proteins, but
the pro-apoptotic repertoire as well [109]. In addition
to targeting anti-apoptotic BCL-2 members, recent BH3-
mimetics design has generated small molecules that
function similar to direct activator BH3-only proteins to
directly induce BAX activation and MOMP. For example,
the small molecule BAX activator molecule 7 (BAM7)
demonstrates impressive potency to activate BAX, similar
to BIM in transformed cells [110]. Of course, one relevant
question is how will this novel class of molecules be used
to specifically kill cancer cells? It is likely that novel com-
binations of sub-threshold levels of chemotherapeutics
will provide the best patient benefits.
As discussed earlier, BH3 mimetics are useful as single

agents in hematological malignancies harboring BIM;
however, the majority of solid tumors do not constitu-
tively express direct activator BH3-only proteins [111].
Therefore, the design of combination therapies must
incorporate strategies to induce direct activator BH3-only
protein expression in order to sensitize solid tumors to
BH3 mimetics. For example, inhibition of BRAFV600E

signaling by PLX-4032 triggers a stress response that
leads to increased expression and accumulation of BIM
at the OMM [61,112]. These sequestered molecules of
BIM can be functionalized by the collateral inhibition of
the anti-apoptotic BCL-2 repertoire using ABT-737 for
example [61]. Similar approaches using conventional che-
motherapies have generated comparable results, suggesting
broad applications for these therapeutic strategies [113].

Piece #3—How is post-MOMP regulation of cell death
relevant in cancer?
So far, we discussed the various cancer-related signaling
pathways upstream of mitochondria taking into consid-
eration the dynamic interactions within the BCL-2 family
at the OMM that lead to the decision to die. Following
MOMP, a cell normally enters the final stages of demise;
while this is often considered the “point of no return”,
there is a growing literature suggesting cells maintain the
ability to resist cell death despite caspase activation [114].
Here, we will highlight several cellular mechanisms that
regulate cell fate post-MOMP including intermembrane
space (IMS) protein release, caspase activation, and cellu-
lar clearance. The therapeutic opportunities to target these
final stages of apoptosis will also be discussed.

What happens post-MOMP?
Once BAK/BAX homo-oligomers permeabilize the OMM,
the inner mitochondrial membrane (IMM) and cristae
junctions undergo extensive remodeling [115-117]. This
remodeling allows several IMS proteins to diffuse into the
cytosol (e.g., cytochrome c, SMAC, Omi, and nearly all
soluble IMS proteins). One of the most crucial of these
proteins is cytochrome c, which binds the cytosolic
adaptor protein apoptotic protease activating factor
(APAF-1) and triggers the formation of a heptameric
complex that recruits and activates procaspase-9. Acti-
vated dimeric caspase-9 directly cleaves and activates
the downstream effector caspase-3 and caspase-7 (Figure 3).
These effector caspases are responsible for eliciting the
classical apoptotic phenotypes characterized by DNA
laddering, phosphatidylserine exposure, and contraction
from the surrounding healthy cells. The cellular pheno-
types stemming from caspase activation also allow for the
generation of “find me” and “eat me” signals that elicit
phagocytosis and removal of the dying cell [118,119].
As we deepen our mechanistic understanding of how

the mitochondrial pathway of apoptosis proceeds after
MOMP, the majority of the literature would agree with
the notion that irrespective of caspase activation (i.e., cas-
pase activation promotes rapid packaging and detection, but
the inhibition of caspases will only delay, not prevent cell
death), most cells die following MOMP due to aberrations
in mitochondrial biology. However, the general applic-
ability of this concept is increasingly being called into
question. Genetic evidence unquestionably supports a



Figure 3 Piece #3: Post-MOMP regulation of cell death. Pro-apoptotic proteins within the mitochondrial inter-membrane space (e.g., cytochrome c,
SMAC, and Omi) are released after MOMP and directly regulate the activation of caspases and commitment to apoptosis. Details are provided in the text.
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pro-survival role for cytochrome c as an integral part of
the electron transport chain; cytochrome c knockout mice
are embryonic lethal due to an organism-wide failure to
generate ATP, and tissue-specific deletions of cytochrome
c corroborate these results [120,121]. Somewhat paradox-
ically, cytochrome c also functions as a crucial mediator of
caspase-dependent death; cells deficient in cytochrome c
are resistant to cytotoxic insults [122]. Whole organism
or tissue-specific deletion eliminates cellular and/or
tissue viability, presumably through a reduction in ATP
generation and developmental cell death that is required
for tissue and organ function. Interestingly, developmental
phenotypes are shared with downstream apoptotic coun-
terparts. Apaf1 and Caspase9 deficiencies result in the
inhibition of developmental apoptosis, with phenotypes
most usually characterized by exencephaly and cranioschi-
sis [123,124]. The function of these proteins in tumor
suppression however remains controversial. While genetic
studies have shown that Apaf-1 and/or caspase-9 deletion
promote Myc-induced oncogenic transformation of MEFs,
in vivo deletion of these genes reportedly had no effect on
the rate, severity, or chemotherapeutic response of Myc-
induced lymphomas [125,126]. This is in contrast to what
is observed, for example, with deletions of pro-apoptotic
proteins such as BIM and BAD. Deletions of either of
these genes have been shown to enhance Eμ-myc induced
lymphoma, highlighting their importance in suppressing
lymphomagenesis [127,128].
To ensure that pro-apoptotic caspases are not inappro-

priately activated in unstressed cellular conditions, add-
itional “apoptotic brakes” are in place that prevent caspase
activation [129]. One example is XIAP, which promotes
cellular survival by inhibiting caspase activation via direct
protein-protein interactions [130]. Following MOMP, the
anti-apoptotic activity of XIAP is counteracted by the
release of two IMS proteins: second mitochondria-derived
activator of caspase (SMAC) and Omi/Htra2 (Omi). Once
released into the cytosol, SMAC and Omi bind and
antagonize the activity of XIAP, thereby allowing for
caspase activation to proceed [131,132]. The function
of SMAC and Omi suggests that post-MOMP regulation
of caspase activity is required, which would not be the
case if MOMP was always sufficient to promote death.
It is important to mention that the Smac and Omi
knockout mice develop normally and exhibit no defects
in susceptibility to apoptosis [133]. This suggests a pos-
sible redundancy in the function of these proteins or a
specificity in cellular stress conditions. Despite an un-
clear role in apoptosis, both of these proteins also have
been suggested to play a role in cancer progression and
chemotherapeutic responses. A decrease in SMAC ex-
pression, at the mRNA and protein levels, has been
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reported in many malignancies including renal cell car-
cinoma, hepatocellular carcinoma, testicular cancer, and
lung cancer. Interestingly, in many of these studies, a
decrease in SMAC levels was also accompanied by an
increase in inhibitor of apoptosis protein (IAP) expres-
sion level as well as an increase in tumor invasion and
metastasis [134-138].
It has become evident that in many cell types, there is

an anti-apoptotic threshold for endogenous caspase
activation, as well as XIAP levels, to modulate cell death
responses. This notion is supported by the observation
that irradiation of cells leading to permeabilization of up
to 15% of the mitochondrial population does not induce
an apoptotic response, suggesting that local release of
mitochondrial proteins does not result in an amplifiable
apoptotic signal [139]. This may also explain the contri-
bution of XIAP over-expression in many tumors, thereby
increasing the threshold for caspase activation and effi-
cient execution of cell death. It is worth mentioning that
XIAP knockout mice are viable and lack apoptotic defects.
These mice do, however, show increases in cellular IAP
(c-IAPs) protein levels suggesting that these proteins
may compensate for XIAP loss during development
and apoptosis [140].
The ultimate goal of post mitochondrial regulation of

pro-apoptotic BCL-2 family function and MOMP is to
initiate the activation of caspases that will complete the
apoptotic program. It is important to consider however
that while caspases play a role in mediating cell death,
they also play important roles in maintaining cell survival.
Caspases generally thought to function exclusively in
apoptosis are now being reported to have many additional
cellular functions [141]. Executioner caspases have been
shown to play roles in adaptive immunity as well as cell
fate decisions including cell differentiation and migra-
tion [142-145]. This raises the question of how a cell
can differentiate between apoptotic and non-apoptotic
caspase activation. Studies have suggested that a threshold
of caspase activation exists in cells where only small levels
of activation are required for non-apoptotic functions,
whereas much higher levels are required to execute cell
death. Another possible mechanism of regulated non-
apoptotic caspase activation is the compartmentalization
of active caspases. Examples of such mechanisms have
been demonstrated in neurons, as well as in macrophages
where caspase containing inflammasomes have been shown
to form. In cancer, overall levels of caspases, particularly
executioner caspases, can be expressed at very low levels. A
screen of primary breast tumors found that approximately
75% of tumors lacked CASP3 transcript as well as protein
expression [146], and similar findings were reported in
colorectal and gastric tumors, which were found to express
very low or absent levels of caspase-7 [147,148]. It is im-
portant to mention however that due to the redundancy
of these proteins, very little evidence supports a role for
individual caspases in regulating tumorigenesis. Individual
caspase knockout animals exhibit quite mild phenotypes
and cells derived from these mice are only slightly more
resistant to apoptosis than their WT counterparts. Cells
lacking both CASP3 and CASP7 however are extremely
resistant to apoptotic stimulus [149]. These observations
raise the possibility that low levels of caspase activation
may promote cell survival and/or tumorigenesis. Among
the demonstrated non-apoptotic roles of caspases is role
in cell migration and potentially invasiveness [150,151]. It
is possible that low or basal levels of caspases promote
cellular migration to a more tumor favorable milieu.

Is there regulation of apoptosis after MOMP?
Given the indication that several mechanisms are in place
to regulate caspase activation and apoptosis post-MOMP,
the next question that arises is why a cell would need
to commit resources to do so once mitochondrial integ-
rity has been compromised. As previously mentioned, it
appears that a specific threshold of cytochrome c release
and subsequent caspase activation must be reached in order
to elicit an apoptotic response. This may be a mechanism
to ensure that a cell survives any potential “accidental
MOMP” events. Recovery post-MOMP may also be essen-
tial for post-mitotic cells including cardiomyocytes and
sympathetic neurons. Such tissues exhibit poor regenerative
potential and therefore have adapted mechanisms to ensure
longevity despite incomplete MOMP [152,153]. Lower
APAF-1 levels have been reported in both cell types as
well as resistance to cytochrome c microinjection. Inhib-
ition of XIAP through the addition of recombinant SMAC
or deletion of XIAP resensitizes these cells, which further
highlights the importance of XIAP in maintaining cellular
survival [154-156].
Finally, ensuring regulation of cell death post-MOMP

is essential for recovery in proliferating cells and has
important implications for tumorigenesis. As discussed
throughout this section, tumors have been shown to
develop mechanisms such as loss of APAF-1, defective
caspase activation, and upregulation of XIAP to bypass
complete cell death [157-161]. Cancer-associated path-
ways like PI3K/AKT have been shown to antagonize
caspase activity by phosphorylation of caspase-9 and
caspase-3 [151,162]. The cellular mechanisms related to
caspase inhibition post-MOMP may present interesting
therapeutic opportunities that can be exploited for cancer
treatment.

Can cells survive despite MOMP?
As discussed, cytochrome c is not only essential for
apoptosome formation but is also an essential compo-
nent of the electron transport chain. Once MOMP has
occurred and cytochrome c is released, not only does
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this trigger the apoptotic cascade but also transiently
shuts down the electron transport chain. One would
expect that both these events would effectively render
cell survival post MOMP unlikely; however, there is evi-
dence of scenarios where cells do recover and survive.
This paradox raises the question of how cells can survive
once MOMP has occurred. Interestingly, a study by Colell
et al. implicated Glyceraldehyde 3-phosphate dehydrogen-
ase (GAPDH) in mediating cellular recovery following
MOMP. The authors showed that through enhanced
glycolysis and autophagy, GAPDH could mediate clo-
nogenic survival post-MOMP if caspase activation was
inhibited [163]. In addition, work by Tait et al., in 2010
demonstrated that often, cells undergo incomplete
MOMP. Through live cell imaging, it was determined
that not all mitochondria in a cell undergo MOMP in
response to apoptotic stimulus. The small surviving popu-
lation provides a cohort of intact, healthy mitochondria
that can potentially repopulate the mitochondrial network
and allow for full cell recovery [164]. Not only do these
studies demonstrate how cells could potentially survive
once MOMP has occurred but also they further under-
score the importance of caspases in mediating apoptosis.
While these studies propose interesting mechanisms of
post-MOMP recovery of cells, the significance of these
processes has yet to be explored in a tumorigenic setting.

How can post-MOMP events be targeted for therapeutic
purposes?
The majority of cell death research with direct implications
on killing cancer cells has focused on the identification of
pathways and therapeutics that promote apoptosis at the
levels of pro-apoptotic signaling (Piece #1) and the BCL-2
family (Piece #2). Given that many tumors have adapted
mechanisms to reduce apoptosis by regulating activities
following MOMP, targeting post-mitochondrial proteins
may present novel therapeutic opportunities.
In 2000, the first crystal structure of the interaction

between SMAC and IAPs was reported [165-167]. This
structure served as the basis for the development of SMAC
mimetics to act as IAP antagonists. These peptides have
been shown to effectively inhibit IAP activity in several
cancer cells, thereby sensitizing them to pro-apoptotic
stimuli [168]. In non-small cell lung cancer, SMAC mimetic
JP1201 was shown to sensitize cells to standard chemo-
therapy [169]. The same peptide was also shown to reduce
primary and metastatic tumor burden in xenograft models
of pancreatic cancer when used in combination with
chemotherapeutics [170]. Interestingly, not only do these
molecules sensitize cells to mitochondrial apoptosis
through XIAP degradation but also to TNF-induced
cell death by antagonizing cellular IAPs. Indeed, SMAC
mimetics can sensitize to inducers of non-apoptotic
cell death via the regulation of TNF receptor mediated
signaling, and this is also influenced by pro-survival path-
ways, such as NFκB [171]. Several other SMAC mimetics
have also been developed and are beginning to show effi-
cacy in phase I and II clinical trials (see Table 1). In
addition to SMAC mimetics, several IAP antagonists have
been developed, including specific XIAP and cIAP in-
hibitors as well as XIAP antisense oligonucleotides. The
latter has shown promising effects in phase I and II
clinical trials when used in combination with standard
chemotherapy in patients with acute myeloid leukemia
[172].

Conclusions
The focus of our discussion has been to describe the
numerous mechanisms by which tumor suppressor and
oncogenic pathways reduce apoptotic sensitivity to initi-
ate tumorigenesis and how these aberrations ultimately
impact upon the success of chemotherapeutic interven-
tions. From the evidence provided above, it appears that
there are two pro-apoptotic signaling networks that
may be specifically disrupted to ensure the survival of
cells harboring oncogenic signals (e.g., oncogenic MAPK
signaling) or genomic instability (e.g., DNA lesions). The
first being upstream of the core apoptotic machinery; this
includes the proteins and pathways (e.g., the p53 pathway)
that specifically detect and respond to oncogenic signaling
and macromolecular damage. When these pathways fail
to recognize aberrations, the compromised cell does not
initiate cell cycle arrest and repair mechanisms to maintain
stability. In situations of chronic or irreparable cellular
stress, a cell may be able to detect cellular damage, but
if the pro-apoptotic machinery is not effectively engaged
to eliminate the compromised cell (e.g., BCL-2 over-
expression), its persistence increases the likelihood of
developing and maintaining secondary events that may
initiate malignancy, and potentially, chemotherapeutically
intractable disease.
Since the advent of cancer chemotherapy, conventional

treatments that promote apoptosis (e.g., cisplatin, dacar-
bazine, vinblastine) have provided the bulk of positive
patient responses and remissions, yet the negative side
effects and low response rates for many tumor types
force scientists and clinicians to search for more opti-
mal strategies. Given our broader knowledge of how the
above pathways function in both physiological and
pathophysiological apoptosis, it is being increasingly evident
that pharmacologically targeting the specific upstream (e.g.,
BRAFV600E) and/or direct pro-apoptotic signaling pathways
(e.g., BH3 mimetics) will likely provide a patient benefit.
Returning to the jigsaw puzzle analogy mentioned earlier,
our discussion on the three key distinct steps (or puzzle
pieces) that regulate apoptotic sensitivity before and after
chemotherapeutic interventions reveals that we are making
significant progress in understanding the key contributions
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of apoptosis in cancer and chemotherapy. Likewise, as
we continue to identify mutations and mechanisms that
directly control apoptosis and malignancy, our pharma-
cological space to rationally design small molecules
will hopefully allow for enhanced precision medicine
to specifically eradicate malignant cells.
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