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Abstract

Background: Understanding the biologic mechanisms underlying the development of lethal prostate cancer is
critical for improved therapeutic and prevention strategies. In this study we explored the role of tumor metabolism
in prostate cancer progression using mRNA expression profiling of seven metabolic pathways; fatty acid
metabolism, glycolysis/gluconeogenesis, oxidative phosphorylation, pentose phosphate, purine metabolism,
pyrimidine metabolism and the tricarboxylic acid cycle.

Methods: The study included 404 men with archival formalin-fixed, paraffin-embedded prostate tumor tissue from
the prospective Health Professionals Follow-up Study and Physicians’ Health Study. Lethal cases (n = 113) were men
who experienced a distant metastatic event or died of prostate cancer during follow-up. Non-lethal controls (n =
291) survived at least 8 years post-diagnosis without metastases. Of 404 men, 202 additionally had matched normal
tissue (140 non-lethal, 62 lethal). Analyses compared expression levels between tumor and normal tissue, by
Gleason grade and by lethal status. Secondary analyses considered the association with biomarkers of cell
proliferation, apoptosis and angiogenesis.

Results: Oxidative phosphorylation and pyrimidine metabolism were identified as the most dysregulated pathways
in lethal tumors (p < 0.007), and within these pathways, a number of novel differentially expressed genes were
identified including POLR2K and APT6V1A. The associations were tumor specific as there was no evidence any
pathways were altered in the normal tissue of lethal compared to non-lethal cases.

Conclusions: The results suggest prostate cancer progression and lethal disease are associated with alterations in
key metabolic signaling pathways. Pathways supporting proliferation appeared to be of particular importance in
prostate tumor aggressiveness.
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Background
It is well known that proliferating tumor cells have dif-
ferent metabolic requirements from normal, differenti-
ated cells [1]. These metabolic needs are reflected, at
least in part, by a shift in metabolic phenotype including
the increased conversion of glucose to lactate even when
oxygen is abundant, a phenomenon termed aerobic gly-
colysis or the Warburg effect [2]. Rapidly replicating
cancer cells require the accumulation of sufficient biomass
for cell growth, and increased glucose uptake is hypothe-
sized to support these requirements [3, 4]. Consequently,
tumors exhibit altered levels of many metabolites associ-
ated with cell growth as well as energetics, stress, and
tissue-specific biochemistry [5, 6]. However, what is less
well understood are the differences in metabolism be-
tween tumors by their degrees of severity.
Prostate cancer represents a particularly appropriate

malignancy in which to explore this question. It is the
second leading cause of cancer mortality in men in many
Western countries, with more than 29,000 deaths in the
USA in 2014 attributable to prostate cancer [7]. Yet, at
the same time, most diagnoses will not prove fatal [5].
There is a wealth of evidence supporting an important
role for dysregulated metabolism in prostate cancer.
One of the most consistently cited risk factors is meta-
bolic syndrome, a collection of patho-physiological en-
tities including visceral obesity, insulin resistance, low
HDL-cholesterol, high triglycerides, elevated C-reactive
protein, and low adiponectin levels [8]. Crucially, the
high concentrations of immune markers and the chronic
inflammation associated with this syndrome are thought
to enhance tumor growth [9]. suggesting that the meta-
bolomic signatures of prostate tumors may also reflect
their aggressive potential [5]. We recently reported that
the pyrimidine biosynthesis pathway, which is respon-
sible for production of nucleic acids needed for cell rep-
lication, is enriched in higher Gleason grade tumors
[10]. Here we extend these analyses to explore other
relevant metabolic pathways and to consider lethal dis-
ease as an endpoint.
The objective of this study was to investigate the

metabolic pathways that underlie the development and
progression of prostate cancer using an integrative mo-
lecular epidemiology approach. We characterized meta-
bolic signatures at the messenger RNA (mRNA) level in
prostate tumors and adjacent benign tissue among men
with prostate cancer, and compared the expression pro-
files across Gleason grade and cancer outcomes. The
analysis was focused on genes encoding enzymes in-
volved in metabolic pathways to further characterize
the role of dysregulated metabolism as a key driver in
tumor aggressiveness and prostate cancer mortality.
There is compelling experimental evidence to support
this hypothesis; malignant cells are known to possess

unique metabolic phenotypes that differ from the
healthy tissues from which they originated [1–4], yet
little data to date in a population-based study of pros-
tate cancer patients. Specifically, we will focus on seven
Kyoto Encyclopaedia of Genes and Genomes (KEGG)
[11] defined pathways thought to be critical in tumor
cellular metabolism, particularly within the prostate:
fatty acid metabolism, glycolysis/gluconeogenesis, oxi-
dative phosphorylation, pentose phosphate, purine me-
tabolism, pyrimidine metabolism, and the tricarboxylic
acid (TCA) cycle. By deconvoluting and quantifying the
contribution of each of the pathways, and by isolating
key driver genes within them, these findings will pro-
vide a uniquely comprehensive understanding of the
metabolic processes underlying the development of le-
thal prostate cancer with considerable potential for dir-
ect translation to prostate cancer patients.

Methods
Study population
This study was nested among men with incident pros-
tate cancer from the prospective US Health Professionals
Follow-up Study (HPFS) or Physicians’ Health Study
(PHS). The HPFS [12] is a cohort study initiated in 1986
among 51,529 male health professionals aged 40 to
75 years. The PHS [13–15] was initiated as a random-
ized trial of aspirin and beta-carotene for the primary
prevention of cardiovascular disease and cancer among
22,071 US male physicians aged 40 to 84 years.
Prostate cancer diagnosis is first reported on question-

naires and confirmed through medical record review.
Clinical and pathological data including age at diagnosis,
prostate-specific antigen (PSA) levels, and tumor stage
are abstracted through medical record review. Post-
diagnosis, men with prostate cancer are followed
through questionnaires to collect information on their
cancers’ clinical course, including development of metas-
tases. Cancer-specific and all-cause mortality is ascertained
through mailings and telephone calls to participants, and
periodic searches of the National Death Index. A commit-
tee of physicians assigns cause of death through medical
record and death certificate review. Follow-up for mortality
is available through 2011 and is >98% complete.
This study includes 404 men with available archival

formalin-fixed, paraffin-embedded (FFPE) prostate tumor
tissue who were part of a whole genome expression profil-
ing project of lethal prostate cancer: 150 men from PHS
and 254 from HPFS. The study included lethal cases (n =
113) defined as men with prostate cancer who experi-
enced a distant metastatic event or died of prostate can-
cer during follow-up, and non-lethal prostate cancer
cases (n = 291) who neither died of prostate cancer nor
presented any evidence of metastases during follow-up
and lived at least 8 years post-diagnosis. Mean follow-
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up was 13.2 years (range 0.1–27.4 years). Of 404 men,
202 additionally had profiling for matched normal tis-
sue (140 non-lethal cases, 62 lethal cases). Hematoxylin
and eosin slides from all cases underwent standardized
histopathologic review, including for Gleason grade and
perineural invasion, by study pathologists [16].

Tissue samples and mRNA profiling
The validated mRNA profiling methodologies were de-
scribed previously [17, 18]. Briefly, RNA was extracted
from two to three 0.6-mm cores within tumor regions
with high cell density (>80% cellularity) and normal tis-
sue, then amplified using the WT-Ovation FFPE Sys-
temV2 (Nugen, San Carlos, CA). Reverse transcription
was used to create a complementary DNA (cDNA)/
mRNA hybrid, then the cDNA was amplified, fragmen-
ted, and labeled for hybridization to a GeneChip Human
Exon 1.0 ST microarray (Affymetrics, Santa Clara, CA).
The raw probe-level data was normalized through robust
multichip averaging [17, 19] and probe annotation infor-
mation obtained from the R package pd.hugene.1.0.st.v1
[20]. Probes not corresponding to genes were excluded,
and where multiple probes corresponded to a single
gene, the probe demonstrating the greatest variability
was used. A total of 20,254 unique named genes were
available. The genes comprising the specific metabolic
pathways of interest were identified using the KEGG
[11] and extracted from the whole transcriptome data.
The seven metabolic pathways are comprised of 444

unique genes. Of these, the expression profiles of 426
passed quality control criteria and were included in
these analyses (Additional file 1: Table S1).

Other tissue biomarkers
Tumor biomarkers were available for a subset of partici-
pants, and these methods have been described previously.
Cellular proliferation was characterized using Ki-67 stain-
ing [21], apoptosis using TUNEL staining [21], and tumor
angiogenesis using microvessel density as defined by ex-
pression of endothelial cell marker CD34 [22].

Statistical analysis
Differences in baseline characteristics between the lethal
and non-lethal cases were assessed using Student’s t test
and the chi-squared test for continuous and categorical
outcomes, respectively.
To explore the role of the metabolic pathways in disease

progression, normalized expression levels were compared
in tumor versus normal tissue, in lethal versus non-lethal
cases, and in Gleason grade ≥8 versus 2–7 cases. Second-
ary analyses considered associations with markers of
apoptosis, angiogenesis and cell proliferation, and the
presence of perineural invasion. A variety of innovative

statistical methods were integrated to capture and quan-
tify both individual gene and pathway level effects.
Individual gene associations for each outcome were

computed for the 426 genes using multivariable logistic
regression models to estimate odds ratios and 95% confi-
dence intervals. Gene expression levels were modeled as
continuous independent variables. Age at diagnosis, co-
hort (HPFS, PHS), year of diagnosis, and body mass
index (BMI) at diagnosis were included as potential con-
founders. For within person tumor versus normal com-
parisons, conditional logistic regression was used.
Pathway level associations were explored using the

Global test [23], a score test designed to detect effects
across many genes in a pathway. The Global test was
performed by comparing, for each KEGG pathway, a lo-
gistic regression model fitted with all the genes compris-
ing that pathway and the potential confounders to a
model including only the confounders. For models with
secondary biomarkers divided into quartiles, a multicate-
gory Global test was used. For the tumor-normal com-
parisons, matching was dropped for these pathway tests.
We also performed Gene Set Enrichment Analysis

(GSEA) [24], a competitive test in which the differential
expression of genes in the pathway is compared to dif-
ferential expression of genes not involved in the path-
way. GSEA determines the relative importance of the
explored pathways and informs on the direction of ef-
fect. For tumor-normal comparisons, the genes were
ranked according to their paired t test statistic and the
GSEA p values were calculated using gene permuta-
tions; for the other analyses, standard GSEA was used
with p values calculated by permuting individuals.
Finally, a shrinkage and selection method, Least Abso-

lute Shrinkage and Selection Operator (LASSO), was
used to identify the genes contributing to pathway level
associations and to determine the effect size. This ap-
proach fits a penalized regression model including all
genes from each pathway as potential covariates and
forces the gene expression coefficients not contributing
to lethal outcome to zero so that they are removed
from the model. The amount of shrinkage applied to
the coefficients depends on a tuning parameter, which
was chosen by using leave-one-out cross-validation to
optimize the likelihood.
All analyses were conducted using the R software

package.

Results
Table 1 presents the clinical features of the lethal and
non-lethal cases. Lethal cases were more likely to be
older and to have a higher Gleason grade, tumor stage,
and PSA level at diagnosis. They were also more likely
to have a higher BMI at both baseline and diagnosis.
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Associations of metabolic pathways with tumorigenesis
A total of 247 (58%) genes in the metabolic pathways
were differentially expressed in tumor vs. normal tissue
(p ≤ 0.05) (Additional file 1: Table S2), and 118 (28%)
retained significance after Bonferroni correction for
multiple testing at p < 1.2 × 10−4 (0.05/426). The most
significantly overexpressed genes in tumor tissue were

CANT1 (OR18.5, p = 5.07 × 10−13), CMPK1 (OR 18.9,
p = 2.35 × 10−12), and GUCY1A3 (OR 8.0, p = 2.52 × 10−12)
annotated with the purine and pyrimidine pathways;
FBP1 (OR 12.8, p = 2.75 × 10−12) and GPI (OR 60.7, p =
2.19 × 10−12) annotated with the pentose phosphate and
glycolysis pathways. The most significantly downregu-
lated gene in tumor tissue was ALDH3A2 (OR 0.03, p =
3.23 × 10−12) annotated with the KEGG glycolysis and
fatty acid metabolism pathways. The differences in
mRNA expression between tumor versus normal tissue
were similar among the lethal and non-lethal cases (re-
sults not shown).
All seven pathways showed altered expression between

tumor and adjacent normal prostate tissue according to
the Global test (p < 1 × 10−10) (Table 2). Using GSEA
testing, pyrimidine metabolism (p = 0.002), purine me-
tabolism (p = 0.006), and oxidative phosphorylation (p <
0.0001) were significant at a Bonferroni corrected
threshold of p < 0.007 (Table 3). All pathways were up-
regulated in the tumor versus normal tissue.
LASSO regression was then used to identify the genes

contributing to the observed pathway level associations.
Most of the significant associations for each pathway
under the individual gene tests were also identified by
the LASSO regression, and several additional genes were
suggested to be of importance (Additional file 1: Table S2).
These may represent genes that are important in a path-
way context, when all other potentially interacting genes
are taken into account.

Associations of metabolic pathways with Gleason grade
We next compared tumor expression levels of the meta-
bolic genes in Gleason 2–7 tumors vs. Gleason ≥8 tu-
mors (Additional file 1: Figure S1). A total of 101 (24%)
genes were associated with Gleason grade (p ≤ 0.05), of
which six genes retained significance after Bonferroni
correction. HPRT1 (purine metabolism pathway, OR 5.2,
p = 1.93 × 10−6), RRM2 (purine and pyrimidine metabol-
ism pathways, OR = 3.8, p = 6.50 × 10−6), PDE4D (purine

Table 2 Logistic Global test p values for pathway level associations of metabolic pathways with tumorigenesis, Gleason grade, and
lethal disease

Pathway (n genes) Tumor tissue vs normal tissue
(n = 202)

Gleason grade >8 tumors vs Gleason grade
2–7 tumors (n = 404;>8 = 106/2–7 = 298)

Lethal tumors vs. non-lethal tumors
(n = 404; L = 113/NL = 291)

Fatty acid metabolism (n = 39) <1.0 × 10−10 0.03 1.4 × 10−4

Glycolysis/gluconeogenesis (n = 62) <1.0 × 10−10 1.4 × 10−5 <1.0 × 10−10

Pentose phosphate (n = 27) <1.0 × 10−10 3.5 × 10−3 8.9 × 10−5

Purine metabolism (n = 157) <1.0 × 10−10 8.8 × 10−6 1.2 × 10−8

Pyrimidine metabolism (n = 96) <1.0 × 10−10 7.6 × 10−5 1.9 × 10−7

Oxidative phosphorylation (n = 123) <1.0 × 10−10 8.3 × 10−5 3.5 × 10−6

TCA (n = 30) <1.0 × 10−10 0.78 0.21

All tests compare the null model including only age at diagnosis, cohort (PHS, HPFS), year of diagnosis, and BMI at diagnosis to the full model which also includes
the genes in the listed pathway. Matching information is dropped for the tumor vs. normal comparison
NL non-lethal, L lethal

Table 1 Baseline and clinical characteristics of 404 participants
with prostate cancer from the PHS and HPFS

Characteristic Non-lethal (n = 291) Lethal (n = 113)

Cohort, N (%)

PHS 120 (41.2%) 30 (26.5%)

HPFS 171 (58.8%) 83 (73.5%)

Age at diagnosis, mean (SD) 64.9 (6.2) 67.5 (6.7)

Clinical tumor stage, N (%)a

T1/T2 N0/Nx M0/Mx 271 (94.1%) 79 (72.5%)

T3 N0/Nx M0/Mx 16 (5.6%) 11 (10.1%)

T4/N1/M1 1 (0.3%) 19 (17.4%)

Gleason grade, N (%)

2–6 56 (19.2%) 1 (0.9%)

3 + 4 126 (43.3%) 13 (11.5%)

4 + 3 67 (23.0%) 35 (31.0%)

8–10 42 (14.4%) 64 (56.6%)

PSA at diagnosis, ng/ml, N (%)b

0–3.9 29 (10.7%) 4 (5.7%)

4–10 163 (60.1%) 35 (50.0%)

10–19.9 54 (19.9%) 15 (21.4%)

>20 25 (9.2%) 16 (22.9%)

Tissue from RP, N (%) 283 (97.3%) 86 (76.1%)

BMI at diagnosis, mean (SD) 25.1 (2.8) 25.9 (3.3)

BMI at baseline, mean (SD) 24.6 (2.5) 25.6 (3.2)

Matched normal tissue available 140 (48.1%) 62 (54.9)
aClinical tumor stage was unknown for 3 (1%) non-lethal cases and 4 (3.5%)
lethal cases
bPSA was unknown for 20 (6.9%) non-lethal cases and 43 (38.1%) lethal cases
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metabolism pathway, OR 0.3, p = 1.22 × 10−5), and
NDUFC2 (oxidative phosphorylation pathway, OR =
3.6, p = 1.64 × 10−5) ranked as the most significant
(Additional file 1: Table S3). Results were similar when
Gleason 7 cancers (3 + 4 and 4 + 3) were excluded and
Gleason 2–6 vs. Gleason 8–10 tumors were compared
(results not shown).
At a pathway level, purine metabolism (p = 8.8 × 10−6),

glycolysis/gluconeogenesis (p = 1.37 × 10−5), pyrimidine
metabolism (p = 7.56 × 10−5), and oxidative phosphor-
ylation (p = 8.3 × 10−5) were significant under the
Global test (Table 2). Pyrimidine metabolism (p =
0.003) and oxidative phosphorylation (p = 0.004) were
also significant under GSEA (Table 3). Most of the
significant genes identified using logistic regression
also ranked under the LASSO model, but novel genes
were also identified.

Associations of metabolic pathways with lethal status
Tumor expression of 124 genes was associated with le-
thal vs. non-lethal outcome (p ≤ 0.05). The associated
odds ratios and p values are described in Fig. 1. Three-
quarters (n = 98, 76%) of these genes were more highly
expressed in the lethal cases (Additional file 1: Table S4).
Twenty-six genes retained significance after Bonferroni
correction. POLR2K, part of the purine and pyrimidine
metabolism pathways, ranked as the top differentially
expressed gene (OR 8.6, p = 5.84 × 10−9). RRM2 (OR 6.8
p = 7.72 × 10−9), POLE2 (OR 13.2, p = 7.36 × 10−7) (both
associated with purine and pyrimidine metabolism), and
ATP6V1A (OR 6.9, p = 7.81 × 10−8) (oxidative phosphor-
ylation) were also expressed to higher levels in lethal tu-
mors, while ALDH2 (OR 0.3, p = 4.65 × 10−8 (associated
with fatty acid metabolism and glycolysis), PDE4D (OR

0.2, p = 7.14 × 10−8, purine metabolism), and ALDH1A3
(OR 0.4, p = 1.89 × 10−6, glycolysis) ranked as the most
significantly downregulated genes. The associations with
lethal disease were attenuated but still significant when
adjusting for Gleason grade (Additional file 1: Figure S2).
All but the TCA cycle pathway were significantly as-

sociated with lethal disease by the Global test at the
Bonferroni corrected threshold (Table 2). Most signifi-
cant associations retained significance or borderline
significance when additionally adjusting for Gleason
grade (Additional file 1: Table S5).
To determine whether the metabolic pathway gene ex-

pression changes may be influenced by gene expression
changes in the surrounding tissue, expression levels were
compared in the morphologically normal prostate tissue
from lethal cases (n = 62) with the normal tissue from
non-lethal (n = 140) cases. None of the pathways were
identified as significant according to the Global test (p >
0.05 for all pathways), and thus the relationship between
lethal disease and altered metabolic gene expression ap-
pears to be a tumor-specific effect.
Intriguingly, the strongest associations were appar-

ent in the overweight/obese men (Additional file 1:
Table S5). There was some evidence that the associa-
tions were restricted to low-stage (T1/T2 N0/Mx) tu-
mors, although the stage-stratified analyses were
limited by small numbers. Again the pathways of pyr-
imidine metabolism (p = 0.006) and oxidative phos-
phorylation (p = 0.006) were significant under GSEA
analysis (Table 3), with both pathways upregulated in
the lethal compared to non-lethal tumors. The drivers
of these pathway associations were explored using
LASSO regression (Additional file 1: Table S4), and
the findings suggested a role for both the top hits from

Table 3 p value and direction of upregulation of the seven metabolic pathways for tumorigenesis, Gleason grade, and lethal
prostate cancer, according to the Gene Set Enrichment Analysis

Pathway (n genes) Tumor tissue vs normal
tissue (n = 202)

Gleason grade >8 tumors vs Gleason grade
2–7 tumors (n = 404; >8 = 106/2–7 = 298)

Lethal tumors vs. non-lethal tumors
(n = 404; L = 113/NL = 291)

p value Expression in tumor
tissue

p value Expression in high Gleason
grade (>8) tumors

p value Expression in lethal
tumors

Fatty acid metabolism
(n = 39)

0.70 ↑ 0.37 ↓ 0.14 ↓

Glycolysis/gluconeogenesis
(n = 62)

0.18 ↑ 0.75 ↑ 0.44 ↓

Pentose phosphate (n = 27) 0.03 ↑ 0.21 ↑ 0.73 ↑

Purine metabolism (n = 157) 6.0 × 10−3 ↑ 0.03 ↑ 0.07 ↑

Pyrimidine metabolism
(n = 96)

2.0 × 10−3 ↑ 3.0 × 10−3 ↑ 6.0 × 10−3 ↑

Oxidative phosphorylation
(n = 123)

<0.0001 ↑ 4.0 × 10−3 ↑ 6.0 × 10−3 ↑

TCA (n = 30) 0.05 ↑ 0.64 ↑ 0.76 ↑

For the tumor vs. normal comparison matching is maintained and the GSEA-Preranked procedure is used with gene-based permutation p values; for the other
two comparisons, standard GSEA is used with sample-based permutation p values
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the logistic regression model as well as a number of
additional genes that may be acting jointly on risk.

Associations with additional secondary outcomes
We explored the association between expression of the
metabolic pathways with biomarkers of cell proliferation,
apoptosis, angiogenesis, and perineural invasion. The
strongest associations of the pathways were with cell
proliferation (p < 0.007) (Table 4). Conversely, there was
no Bonferroni corrected significant association with
apoptosis nor angiogenesis. Extent of perineural invasion
was significantly associated with fatty acid metabolism
(p = 1.1 × 10−6), glycolysis/gluconeogenesis (p = 1.2 × 10−4),
purine metabolism (p = 1.9 × 10−5), and pyrimidine metab-
olism (p = 3.5 × 10−4).

Discussion
Cancer cells share a metabolic requirement to support
inappropriate cell proliferation and maintain growth [1];
however, the ways in which these requirements are ful-
filled differ across tumor types. In particular, the healthy
prostate is known to exhibit a unique metabolism, enab-
ling the production of the components of prostatic fluid:
PSA, spermine, myso-inositol, and citrate. This is dis-
rupted in neoplastic cells due to the loss of ability to ac-
cumulate zinc and subsequently to accumulate citrate.
Therefore prostate tumors display unique metabolomic
alterations [25, 26]. These metabolic alterations may vary
according to tumor aggressiveness; however, the majority
of studies to date exploring this question have focused
on cell lines or model organism. None have focused on
prostate cancer within a patient cohort [2, 27]. The

Fig. 1 Strength and significance of individual gene associations with lethal prostate cancer among seven metabolic pathways. Log odds ratios
computed using a logistic regression model adjusting for age at diagnosis, cohort (HPFS, PHS), year of diagnosis, and BMI at diagnosis

Table 4 Multicategory Global test p value for pathway level associations of tumor expression of the metabolic pathways with
histologic and molecular features of prostate cancer

Pathway (n genes) Ki-67 quartiles
(n = 314 men)

Apoptosis quartiles
(n = 255 men)

Microvessel density quartilesa

(n = 174 men)
Perineural invasiona

(n = 132 men)

Fatty acid metabolism (n = 39) 1.8 × 10−4 0.20 0.01 1.1 × 10−6

Glycolysis/gluconeogenesis (n = 62) 9.4 × 10−9 0.19 0.06 1.2 × 10−4

Pentose phosphate (n = 27) 4.0 × 10−6 0.20 0.14 0.04

Purine metabolism (n = 157) 4.1 × 10−6 0.42 0.09 1.9 × 10−5

Pyrimidine metabolism (n = 96) 2.8 × 10−6 0.64 0.17 3.5 × 10−4

Oxidative phosphorylation (n = 123) 3.1 × 10−8 0.09 2.0 × 10−3 0.02

TCA (n = 30) 1.1 × 10−7 0.30 0.04 0.37

All tests compare the null model including only age at diagnosis, cohort (PHS, HPFS) if data was available for both, year of diagnosis, and BMI at diagnosis to the
full model which also includes the genes in the listed pathway
aData was only available for HPFS so cohort was excluded from these models
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results of this novel study provide human-based evi-
dence that key metabolic pathways are relevant to pros-
tate cancer lethality. Therefore, the findings have the
potential for forward translation into the identification
of therapeutic targets and the development of bio-
markers that better define tumors by their degree of
aggressiveness.
Consistent with previous literature [3], in this study,

we demonstrate alterations in key metabolic genes and
pathways within the prostate during tumorigenesis. Cru-
cially, we additionally offer evidence that these changes
differ in cancer progression by histologic grade and by
lethal outcome. Changes in prostate tumor gene expres-
sion were dominated by increased expression in the le-
thal or high-grade cancers, which may suggest that this
subset of aggressive prostate tumors have increased
metabolic activity. This is supported by studies in other
tumors reporting increased nutrient uptake by FDG-
PET is associated with more aggressive cancer [28].
Among the top differentially expressed genes, many

were common between the tumorigenesis, lethal and
Gleason analyses, while others appeared to be specific to
disease aggressiveness. A number of the top genes iden-
tified in this study have previously been implicated in
prostate cancer development and progression, Gleason
grade, metastases and biochemical recurrence; including
CANT1 [29], FBP1 [30], RRM2 [31], POLE2 [32],
PDE4D [33], and ALDH1A3 [34]. This supports the val-
idity of our findings and strengthens the evidence for
the role of these genes by demonstrating their differen-
tial expression levels in a human study.
Additionally, we report a number of novel genes with

biological plausibility; this is the first study to report on
the association between GPI and ALDH3A2 with pros-
tate cancer in a human population. Mammalian GPI has
been demonstrated to function as a tumor-secreted cyto-
kine and angiogenic factor, while cells with high ALDH
activity have been shown to display metastasis-initiating
behavior [35]. A further ALDH isoform, ALDH2, has
previously been associated with the progression of be-
nign prostatic hyperplasia [36], but this study represents
the first to specifically link it with lethal prostate cancer.
Similarly, we report novel associations between Gleason
grade with HPRT1 and NDUFC2. NADH dehydrogen-
ase has been repeatedly implicated in prostate cancer
risk [37], and both these genes play vital roles in the
generation of the purine nucleotides necessary to sup-
port proliferation.
On a pathway level, the predominance of gene expres-

sion changes associated with glycolysis and oxidative
phosphorylation pathways provides support for a shift in
metabolism toward increased aerobic glycolysis in tu-
mors with lethal potential [3]. Changes in gene expres-
sion in the other investigated pathways may help

dividing cells fulfill proliferation requirements that ex-
tend beyond ATP production [2]. The increased expres-
sion of genes encoding enzymes in the purine and
pyrimidine metabolism pathways in lethal relative to
non-lethal tumors may support increased DNA replica-
tion and cell proliferation in these tumors, while
changes in the pentose phosphate pathway and fatty
acid metabolism genes may reflect the increased need
of lethal tumors for nucleotides, amino acids, and lipids
[4, 27]. This is further supported by the association of
these pathways with biomarkers of cell proliferation
and is in agreement with the enrichment of genes of
pyrimidine metabolism in high Gleason grade tumors
[10]. Interestingly, there was no difference in metabolic
enzyme expression of the seven KEGG pathways ob-
served in the adjacent normal tissue from patients who
developed lethal prostate cancer compared to those
who did not develop lethal disease, supporting a tumor-
specific effect.
There are potential limitations to this study. A signifi-

cantly larger proportion of the non-lethal cases had bi-
opsy tissue available from transurethral resection of the
prostate as opposed to radical prostatectomy (RP), and
our recent study suggests that the expression levels of
some genes differs as a function of zone of origin [10].
However, sensitivity analyses restricting to the RP cases
produced comparable results. A hypothesis-led approach
was taken for the selection of metabolic pathways, al-
though it is possible that other metabolic pathways not
considered in these analyses may be exerting an effect.
In this study, we were unable to measure metabolite
concentrations and inferred the metabolic state based
on expression of metabolic pathways. However, the
regulatory mechanisms determining the relationship
between gene expression and metabolite levels are
complex and not yet fully understood [38]. Transcript
levels and metabolite abundances do not overlap dir-
ectly with the underlying biochemical pathways [39].
The correlations between transcripts and metabolites
may be influenced by time lags, reaction kinetics, net-
work effects, feedback reactions, or noise. Furthermore,
post-translational modification can have substantial im-
pacts on metabolite levels [38, 39].
Nevertheless, transcriptional regulation is known to

play an important role in the control of metabolism [40],
and thus can be considered a good proxy with which to
explore our pathways of interest. This study represents
one of the largest of its kind to date and, to the best of
our knowledge, is the first to use in silico analysis of
gene expression profiling to discover new hypotheses
that may underlie lethal prostate cancer link. We focus
on important but as yet underexplored hypotheses,
based on strong biological rational, to provide an in-
creased mechanistic understanding of lethal prostate
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cancer. The nesting within two population-based studies
with a rich variety of epidemiological, anthropometric,
and lifestyle data allows us to control for possible con-
founding factors and evaluate effect modifiers. Further-
more, the methodologies utilized in this study have been
previously validated within our included cohorts. The
availability of matched normal tissue allowed us to con-
sider the potential role of the tumor microenvironment
on our findings, and the possibility of a field effect,
representing a further strength of this study.

Conclusions
In conclusion, prostate tumorigenesis is associated
with dysregulation of key metabolic signaling path-
ways. Within tumor tissue, we offer evidence of spe-
cific alterations that differ by Gleason grade and lethal
outcome and identify novel genes that may play an im-
portant role. Our findings add further support to the
hypotheses that metabolic alterations in aggressive tu-
mors may extend beyond an increase in aerobic gly-
colysis and encompass changes in gene expression for
enzymes involved in other pathways supporting prolif-
eration [2, 4, 41]. A thorough understanding of the
metabolic phenotypes of aggressive tumors may help
us to better define the mechanisms underlying lethal
prostate cancer and illuminate novel therapeutic tar-
gets, to improve outcomes for those men at greatest
risk of prostate cancer death [2, 4, 42].
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